Regular unitarily invariant spaces on the complex sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 54-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a compact space, $X$ a closed subspace of $C(K)$, and $\mu$ a positive measure on $K$.
The triple $(X,K,\mu)$ is said to be regular if for any positive function $\varphi\in C(K)$ and for any $\varepsilon>0$ there exists a function $f\in X$ such that $|f|\le\varphi$ on $K$ and $\mu\{t\in K:|f(t)|\ne\varphi(t)\}\varepsilon$.
The case when $K$ is the unit sphere in $\mathbb C_n$ and the subspace $X$ is invariant with respect to the
unitary group is investigated. Sufficient spectral conditions and a necessary condition for regularity are obtained. Connections with compactness of certain Hankel operators and applications to interpolation
problems are presented.
@article{ZNSL_1998_255_a3,
author = {E. Doubtsov},
title = {Regular unitarily invariant spaces on the complex sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--81},
publisher = {mathdoc},
volume = {255},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a3/}
}
E. Doubtsov. Regular unitarily invariant spaces on the complex sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 54-81. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a3/