A variational formula for Bergman kernels
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 221-243
Voir la notice de l'article provenant de la source Math-Net.Ru
For a given family of domains $\Omega_t\subset\mathbb C^n$, $t\in[0,1]$, under some assumptions a formula for $B_1(z,s)-B_0(z,s)$ is established, where $B_0$ and $B_1$ are the Bergman kernels for $\Omega_0$ and $\Omega_1$. As an application of this formula, we obtain two terms in the asymptotics of $B(z,z)$ as
$z\to\partial\Omega$ for a special class of domains.
@article{ZNSL_1998_255_a14,
author = {N. A. Shirokov},
title = {A variational formula for {Bergman} kernels},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {221--243},
publisher = {mathdoc},
volume = {255},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a14/}
}
N. A. Shirokov. A variational formula for Bergman kernels. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 221-243. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a14/