On the invariance of some classes of holomorphic functions under integral and differential operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 184-197
Voir la notice de l'article provenant de la source Math-Net.Ru
The following classes of functions analytic in the unit disk are considered:
$$
N^p_\omega=\biggl\{f\in H(D):\|T(f)\|_{L^p_{(\omega)}}=\bigl(\int\limits^1_0\omega(1-r)T^p(f,r)dr\bigr)^{1/p}+\infty\biggr\},
$$
$$
\tilde N^p_\omega=\biggl\{f\in H(D):\int^1_0\,\int^\pi_{-\pi}\omega(1-r)\bigl(\ln^+|f(re^{i\varphi})|\bigr)^p\,rdrd\varphi+\infty\biggr\},
$$
where $T(f,r)=\frac1{2\pi}\int\limits^\pi_{-\pi}\ln^+|f(re^{i\varphi})|d\varphi$ is the Nevanlinna haracteristic and $\omega$ is a positive function on $(0,1]$. Necessary and sufficient conditions on $\omega$ are established, under which the classes $N^p_\omega$ and $\tilde N^p_\omega$ are invariant under the operators of differentiation and integration.
@article{ZNSL_1998_255_a12,
author = {F. A. Shamoyan and I. N. Kursina},
title = {On the invariance of some classes of holomorphic functions under integral and differential operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {184--197},
publisher = {mathdoc},
volume = {255},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/}
}
TY - JOUR AU - F. A. Shamoyan AU - I. N. Kursina TI - On the invariance of some classes of holomorphic functions under integral and differential operators JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 184 EP - 197 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/ LA - ru ID - ZNSL_1998_255_a12 ER -
%0 Journal Article %A F. A. Shamoyan %A I. N. Kursina %T On the invariance of some classes of holomorphic functions under integral and differential operators %J Zapiski Nauchnykh Seminarov POMI %D 1998 %P 184-197 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/ %G ru %F ZNSL_1998_255_a12
F. A. Shamoyan; I. N. Kursina. On the invariance of some classes of holomorphic functions under integral and differential operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 184-197. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/