On the invariance of some classes of holomorphic functions under integral and differential operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 184-197

Voir la notice de l'article provenant de la source Math-Net.Ru

The following classes of functions analytic in the unit disk are considered: $$ N^p_\omega=\biggl\{f\in H(D):\|T(f)\|_{L^p_{(\omega)}}=\bigl(\int\limits^1_0\omega(1-r)T^p(f,r)dr\bigr)^{1/p}+\infty\biggr\}, $$ $$ \tilde N^p_\omega=\biggl\{f\in H(D):\int^1_0\,\int^\pi_{-\pi}\omega(1-r)\bigl(\ln^+|f(re^{i\varphi})|\bigr)^p\,rdrd\varphi+\infty\biggr\}, $$ where $T(f,r)=\frac1{2\pi}\int\limits^\pi_{-\pi}\ln^+|f(re^{i\varphi})|d\varphi$ is the Nevanlinna haracteristic and $\omega$ is a positive function on $(0,1]$. Necessary and sufficient conditions on $\omega$ are established, under which the classes $N^p_\omega$ and $\tilde N^p_\omega$ are invariant under the operators of differentiation and integration.
@article{ZNSL_1998_255_a12,
     author = {F. A. Shamoyan and I. N. Kursina},
     title = {On the invariance of some classes of holomorphic functions under integral and differential operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--197},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/}
}
TY  - JOUR
AU  - F. A. Shamoyan
AU  - I. N. Kursina
TI  - On the invariance of some classes of holomorphic functions under integral and differential operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 184
EP  - 197
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/
LA  - ru
ID  - ZNSL_1998_255_a12
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%A I. N. Kursina
%T On the invariance of some classes of holomorphic functions under integral and differential operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 184-197
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/
%G ru
%F ZNSL_1998_255_a12
F. A. Shamoyan; I. N. Kursina. On the invariance of some classes of holomorphic functions under integral and differential operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 184-197. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a12/