A property of purely hyperbolic Fuchsian groups of the second kind
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 177-183

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a purely hyperbolic finitely generated non-elementary Fuchsian group of the second kind. If $\Lambda$ is the limit set of the group $G$, then the function $\log(\mathrm{dist}\,(x,\Lambda))$ belongs to the class BMO. This follows from the fact that $\Lambda$ is porous, which is proved in the paper.
@article{ZNSL_1998_255_a11,
     author = {O. L. Semenova},
     title = {A property of purely hyperbolic {Fuchsian} groups of the second kind},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--183},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a11/}
}
TY  - JOUR
AU  - O. L. Semenova
TI  - A property of purely hyperbolic Fuchsian groups of the second kind
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 177
EP  - 183
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a11/
LA  - ru
ID  - ZNSL_1998_255_a11
ER  - 
%0 Journal Article
%A O. L. Semenova
%T A property of purely hyperbolic Fuchsian groups of the second kind
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 177-183
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a11/
%G ru
%F ZNSL_1998_255_a11
O. L. Semenova. A property of purely hyperbolic Fuchsian groups of the second kind. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 177-183. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a11/