Two multidimensional analogues of the F. and M. Riesz theorem
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 164-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new collection of Riesz sets for $\mathbb R^n$ and $\mathbb Z^n$ is exhibitize. The results are new even in $1$-dimensional case. An asymptotic estimate of Fourier multipliers on finite measures in $H^{1,\infty}$ space used for the proof is interesting in itself.
@article{ZNSL_1998_255_a10,
     author = {M. M. Roginskaya},
     title = {Two multidimensional analogues of the {F.~and} {M.~Riesz} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--176},
     year = {1998},
     volume = {255},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a10/}
}
TY  - JOUR
AU  - M. M. Roginskaya
TI  - Two multidimensional analogues of the F. and M. Riesz theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 164
EP  - 176
VL  - 255
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a10/
LA  - ru
ID  - ZNSL_1998_255_a10
ER  - 
%0 Journal Article
%A M. M. Roginskaya
%T Two multidimensional analogues of the F. and M. Riesz theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 164-176
%V 255
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a10/
%G ru
%F ZNSL_1998_255_a10
M. M. Roginskaya. Two multidimensional analogues of the F. and M. Riesz theorem. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 164-176. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a10/