Extremal decompositions of a Riemann surface and quasiconformal mappings of a special type
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 108-115
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the extremal decomposition of a finite Riemann surface $\mathfrak R$ into a system of doubly connected domains may be associated with a family of quasiconformal mappings $\mathfrak R\to\mathfrak R'$, which are similar to the Teichmüller mappings. In the case $\mathfrak R=\overline{\mathbb C}$, this construction allows us to prove that the extremal value of the functional in the indicated problem on the extremal decomposition is a pluriharmonic function of the coordinates of the distinguished points on $\overline{\mathbb C}$.
@article{ZNSL_1998_254_a6,
author = {E. G. Emel'yanov},
title = {Extremal decompositions of {a~Riemann} surface and quasiconformal mappings of a special type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--115},
year = {1998},
volume = {254},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/}
}
E. G. Emel'yanov. Extremal decompositions of a Riemann surface and quasiconformal mappings of a special type. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 108-115. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/