Extremal decompositions of a~Riemann surface and quasiconformal mappings of a special type
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 108-115

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the extremal decomposition of a finite Riemann surface $\mathfrak R$ into a system of doubly connected domains may be associated with a family of quasiconformal mappings $\mathfrak R\to\mathfrak R'$, which are similar to the Teichmüller mappings. In the case $\mathfrak R=\overline{\mathbb C}$, this construction allows us to prove that the extremal value of the functional in the indicated problem on the extremal decomposition is a pluriharmonic function of the coordinates of the distinguished points on $\overline{\mathbb C}$.
@article{ZNSL_1998_254_a6,
     author = {E. G. Emel'yanov},
     title = {Extremal decompositions of {a~Riemann} surface and quasiconformal mappings of a special type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--115},
     publisher = {mathdoc},
     volume = {254},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/}
}
TY  - JOUR
AU  - E. G. Emel'yanov
TI  - Extremal decompositions of a~Riemann surface and quasiconformal mappings of a special type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 108
EP  - 115
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/
LA  - ru
ID  - ZNSL_1998_254_a6
ER  - 
%0 Journal Article
%A E. G. Emel'yanov
%T Extremal decompositions of a~Riemann surface and quasiconformal mappings of a special type
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 108-115
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/
%G ru
%F ZNSL_1998_254_a6
E. G. Emel'yanov. Extremal decompositions of a~Riemann surface and quasiconformal mappings of a special type. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 108-115. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a6/