Constructive descriptions of classes of functions with the help of polynomial approximations.~I
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 207-234

Voir la notice de l'article provenant de la source Math-Net.Ru

Proofs of results announced earlier are given. Theorem 1, which was announced in 1976, states that a function on a domain with bounded boundary rotation can be approximated in terms of a function $\rho_1^*(z)$, which modifies the classical distance $\rho_{1/n}(z)$ for the points whose neighborhoods contain more than one arc of the level curve of the complement of the domain. Theorem 2, which was announced in 1977, provides a domain with bounded boundary rotation and a function in the analytic Hölder $\alpha$-class on the domain which cannot be approximated with precision $p_{1/n}^\alpha(z)$ by polynomials.
@article{ZNSL_1998_254_a12,
     author = {N. A. Shirokov},
     title = {Constructive descriptions of classes of functions with the help of polynomial {approximations.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--234},
     publisher = {mathdoc},
     volume = {254},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a12/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Constructive descriptions of classes of functions with the help of polynomial approximations.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 207
EP  - 234
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a12/
LA  - ru
ID  - ZNSL_1998_254_a12
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Constructive descriptions of classes of functions with the help of polynomial approximations.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 207-234
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a12/
%G ru
%F ZNSL_1998_254_a12
N. A. Shirokov. Constructive descriptions of classes of functions with the help of polynomial approximations.~I. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 207-234. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a12/