On the mean number of solutions of certain congruences
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 192-206
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(X)$ be an irreducible polynomial of degree $m\ge3$ with integer coefficients and unit leading coefficient, and let $\rho(n)$ be the number of solutions of the congruence
$$
f(x)\equiv 0\pmod n; \quad 0\le X$$
For certain classes of polynomials (in particular, for Abelian polynomials), the Dirichlet series
$$
\sum_{n-1}^{\infty}\frac{p(n)}{n^s} \quad (\operatorname{Re}s>1)
$$
has an analytic continuation to the left of the line $\operatorname{Re}s=1$. This allows us to obtain anasymptotic formula for $\sum_{n\le1}\rho(n)$ as $x\to\infty$, where the error term is better than that obtained on the basis of the modern theory of multiplicative functions.
@article{ZNSL_1998_254_a11,
author = {O. M. Fomenko},
title = {On the mean number of solutions of certain congruences},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {192--206},
publisher = {mathdoc},
volume = {254},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/}
}
O. M. Fomenko. On the mean number of solutions of certain congruences. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 192-206. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/