On the mean number of solutions of certain congruences
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 192-206

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(X)$ be an irreducible polynomial of degree $m\ge3$ with integer coefficients and unit leading coefficient, and let $\rho(n)$ be the number of solutions of the congruence $$ f(x)\equiv 0\pmod n; \quad 0\le X$$ For certain classes of polynomials (in particular, for Abelian polynomials), the Dirichlet series $$ \sum_{n-1}^{\infty}\frac{p(n)}{n^s} \quad (\operatorname{Re}s>1) $$ has an analytic continuation to the left of the line $\operatorname{Re}s=1$. This allows us to obtain anasymptotic formula for $\sum_{n\le1}\rho(n)$ as $x\to\infty$, where the error term is better than that obtained on the basis of the modern theory of multiplicative functions.
@article{ZNSL_1998_254_a11,
     author = {O. M. Fomenko},
     title = {On the mean number of solutions of certain congruences},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {192--206},
     publisher = {mathdoc},
     volume = {254},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On the mean number of solutions of certain congruences
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 192
EP  - 206
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/
LA  - ru
ID  - ZNSL_1998_254_a11
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On the mean number of solutions of certain congruences
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 192-206
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/
%G ru
%F ZNSL_1998_254_a11
O. M. Fomenko. On the mean number of solutions of certain congruences. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 192-206. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a11/