On the Nevanlinna--Pick interpolation problem in multiply connected domains
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 5-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We simplify and strengthen Abrahamse's result on the Nevanlinna–Pick interpolation problem in a finitely connected planar domain, according to which the problem has a solution if and only if the Pick matrices associated with character-automorphic Hardy spaces are positive semidefinite for all characters in $\mathbb R^ {n-1}/\mathbb Z^{n-1}$, where $n$ is the connectivity of the domain. The main aim of the paper is to reduce the indicated procedure (verification of the positive semidefiniteness) for the entire real $(n-1)$-torus $\mathbb R^{n-1}/\mathbb Z^{n-1}$ to a part of it, whose dimension is, possibly, less than $n-1$.
@article{ZNSL_1998_254_a0,
     author = {V. P. Vinnikov and S. I. Fedorov},
     title = {On the {Nevanlinna--Pick} interpolation problem in multiply connected domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {254},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a0/}
}
TY  - JOUR
AU  - V. P. Vinnikov
AU  - S. I. Fedorov
TI  - On the Nevanlinna--Pick interpolation problem in multiply connected domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 5
EP  - 27
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a0/
LA  - ru
ID  - ZNSL_1998_254_a0
ER  - 
%0 Journal Article
%A V. P. Vinnikov
%A S. I. Fedorov
%T On the Nevanlinna--Pick interpolation problem in multiply connected domains
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 5-27
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a0/
%G ru
%F ZNSL_1998_254_a0
V. P. Vinnikov; S. I. Fedorov. On the Nevanlinna--Pick interpolation problem in multiply connected domains. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a0/