On transversals of the family of translates of two-dimensional convex compact
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 67-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem gives an affirmative answer to Grünbaum's old equistion. Let $\mathscr K$ be the family of translates of a convex compact set $K\subset\mathbb R^2$. If every two elements of $\mathscr K$ have a common point, then there exist three points $A,B,C\in\mathbb R^2$ such that every element of $\mathscr K$ contains some of these points.
@article{ZNSL_1998_252_a7,
     author = {R. N. Karasev},
     title = {On transversals of the family of translates of two-dimensional convex compact},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--77},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a7/}
}
TY  - JOUR
AU  - R. N. Karasev
TI  - On transversals of the family of translates of two-dimensional convex compact
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 67
EP  - 77
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a7/
LA  - ru
ID  - ZNSL_1998_252_a7
ER  - 
%0 Journal Article
%A R. N. Karasev
%T On transversals of the family of translates of two-dimensional convex compact
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 67-77
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a7/
%G ru
%F ZNSL_1998_252_a7
R. N. Karasev. On transversals of the family of translates of two-dimensional convex compact. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 67-77. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a7/