Cobordisms of immersions with codimension two
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 40-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We single out the obstruction for a closed $\mathbb Z_2$-null homologous submanifold of codimension 2 to be the boundary of a submanifold of codimension 1. As an application, we calculate the groups $E\mathscr N_n(\mathbb R^{n+2})$ of cobordisms of embeddings of nonoriented $n$-manifolds in the Euclidean $n+2$-space for $n=3$ and 4. Namely, we show that $E\mathscr N_3(\mathbb R^2)=\mathbb Z_2$, $E\mathscr N_4(\mathbb R^6)=0$. A specific generator of the former group is explicitly given.
@article{ZNSL_1998_252_a4,
     author = {M. Yu. Zvagel'skii},
     title = {Cobordisms of immersions with codimension two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--51},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a4/}
}
TY  - JOUR
AU  - M. Yu. Zvagel'skii
TI  - Cobordisms of immersions with codimension two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 40
EP  - 51
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a4/
LA  - ru
ID  - ZNSL_1998_252_a4
ER  - 
%0 Journal Article
%A M. Yu. Zvagel'skii
%T Cobordisms of immersions with codimension two
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 40-51
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a4/
%G ru
%F ZNSL_1998_252_a4
M. Yu. Zvagel'skii. Cobordisms of immersions with codimension two. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 40-51. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a4/