Invariants of links and knots on $T$-polyhedra
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 231-246

Voir la notice de l'article provenant de la source Math-Net.Ru

Any link in $\mathbb R^3$ can be isotopically deformed to the polyhedron $T=\{(x,y,z)\in\mathbb R^3\mid z=0$ or $y=0$, $z\ge0\}$. Arising nontrivial theory of links and knots on $T$ is developed. The main result consists in presenting an isotopic invariant, which can distinguish pairs of knots on $T$ isotopic as knots in $\mathbb R^3$.
@article{ZNSL_1998_252_a20,
     author = {P. V. Svetlov},
     title = {Invariants of links and knots on $T$-polyhedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {231--246},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/}
}
TY  - JOUR
AU  - P. V. Svetlov
TI  - Invariants of links and knots on $T$-polyhedra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 231
EP  - 246
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/
LA  - ru
ID  - ZNSL_1998_252_a20
ER  - 
%0 Journal Article
%A P. V. Svetlov
%T Invariants of links and knots on $T$-polyhedra
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 231-246
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/
%G ru
%F ZNSL_1998_252_a20
P. V. Svetlov. Invariants of links and knots on $T$-polyhedra. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 231-246. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/