Invariants of links and knots on $T$-polyhedra
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 231-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Any link in $\mathbb R^3$ can be isotopically deformed to the polyhedron $T=\{(x,y,z)\in\mathbb R^3\mid z=0$ or $y=0$, $z\ge0\}$. Arising nontrivial theory of links and knots on $T$ is developed. The main result consists in presenting an isotopic invariant, which can distinguish pairs of knots on $T$ isotopic as knots in $\mathbb R^3$.
@article{ZNSL_1998_252_a20,
author = {P. V. Svetlov},
title = {Invariants of links and knots on $T$-polyhedra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {231--246},
publisher = {mathdoc},
volume = {252},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/}
}
P. V. Svetlov. Invariants of links and knots on $T$-polyhedra. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 231-246. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a20/