Analogue of Milnor link group in higher-dimensional link theory
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 175-190

Voir la notice de l'article provenant de la source Math-Net.Ru

We study singular links of several $k$-spheres and a $p$-sphere in the $(2k+1)$-sphere. For $k>1$ we construct a theory of such singular links parallel to J. Milnor's one-dimensional link theory.
@article{ZNSL_1998_252_a15,
     author = {V. M. Nezhinskii},
     title = {Analogue of {Milnor} link group in higher-dimensional link theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--190},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a15/}
}
TY  - JOUR
AU  - V. M. Nezhinskii
TI  - Analogue of Milnor link group in higher-dimensional link theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 175
EP  - 190
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a15/
LA  - ru
ID  - ZNSL_1998_252_a15
ER  - 
%0 Journal Article
%A V. M. Nezhinskii
%T Analogue of Milnor link group in higher-dimensional link theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 175-190
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a15/
%G ru
%F ZNSL_1998_252_a15
V. M. Nezhinskii. Analogue of Milnor link group in higher-dimensional link theory. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 175-190. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a15/