Special configurations of planes associated with convex compact
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 165-174

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological methods are applied for proving several combinatorial geometry properties of convex compact sets. It is proved that if $K_1,\dots,K_{n-1}$ are convex compacta in $\mathbb R^n$, then there is an $(n-2)$-plane $E\subset\mathbb R$ such that for $i=1,2,\dots,n-1$ there exist three (two orthogonal) hyperplanes through $E$ dividing each of $K_i$ into six (four) parts of equal volume. It is also proved that for every two bounded centrally symmetric continuous distributions of masses in $R^3$ with common center of symmetry there are three planes through this center, dividing both masses into eight equal parts.
@article{ZNSL_1998_252_a14,
     author = {V. V. Makeev},
     title = {Special configurations of planes associated with convex compact},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a14/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Special configurations of planes associated with convex compact
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 165
EP  - 174
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a14/
LA  - ru
ID  - ZNSL_1998_252_a14
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Special configurations of planes associated with convex compact
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 165-174
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a14/
%G ru
%F ZNSL_1998_252_a14
V. V. Makeev. Special configurations of planes associated with convex compact. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 165-174. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a14/