Geometry of real Grassmannian manifolds. VI
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133
Voir la notice du chapitre de livre
Using invariants of the canonical decomposition of the tangent vector of an arbitrary geodesic in the real Grassmannian variety $G_{p,n}^+$, we give a complete description of the set of conjugate points. For an arbitrary shortest curve, a nontrivial variation with fixed endpoints is constructed. The separation sets for the Grassmannian $G_{2,4}^+$ and its tangent bundle are found.
@article{ZNSL_1998_252_a10,
author = {S. E. Kozlov},
title = {Geometry of real {Grassmannian} {manifolds.~VI}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--133},
year = {1998},
volume = {252},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/}
}
S. E. Kozlov. Geometry of real Grassmannian manifolds. VI. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/