Geometry of real Grassmannian manifolds.~VI
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Using invariants of the canonical decomposition of the tangent vector of an arbitrary geodesic in the real Grassmannian variety $G_{p,n}^+$, we give a complete description of the set of conjugate points. For an arbitrary shortest curve, a nontrivial variation with fixed endpoints is constructed. The separation sets for the Grassmannian $G_{2,4}^+$ and its tangent bundle are found.
			
            
            
            
          
        
      @article{ZNSL_1998_252_a10,
     author = {S. E. Kozlov},
     title = {Geometry of real {Grassmannian} {manifolds.~VI}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/}
}
                      
                      
                    S. E. Kozlov. Geometry of real Grassmannian manifolds.~VI. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/