Geometry of real Grassmannian manifolds.~VI
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133

Voir la notice de l'article provenant de la source Math-Net.Ru

Using invariants of the canonical decomposition of the tangent vector of an arbitrary geodesic in the real Grassmannian variety $G_{p,n}^+$, we give a complete description of the set of conjugate points. For an arbitrary shortest curve, a nontrivial variation with fixed endpoints is constructed. The separation sets for the Grassmannian $G_{2,4}^+$ and its tangent bundle are found.
@article{ZNSL_1998_252_a10,
     author = {S. E. Kozlov},
     title = {Geometry of real {Grassmannian} {manifolds.~VI}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Geometry of real Grassmannian manifolds.~VI
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 121
EP  - 133
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/
LA  - ru
ID  - ZNSL_1998_252_a10
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Geometry of real Grassmannian manifolds.~VI
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 121-133
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/
%G ru
%F ZNSL_1998_252_a10
S. E. Kozlov. Geometry of real Grassmannian manifolds.~VI. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 121-133. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a10/