On intersections of convex bodies
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 7-12
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $K_0,K_1,\dots,K_m$ be nonempty convex bodies in $\mathbb R^n$. Let $r_1,\dots,r_m$ be vectors in $\mathbb R^n$, $\rho=(r_1,\dots,r_m)\in\mathbb R^{nm}$. Then the set $D=\{\rho\mid\Phi(\rho)K_0\cap\bigcap^m_{i=1}(K_i+r_i)\ne\varnothing\}$ is convex in $\mathbb R^{nm}$, and the family of sets
$\{\Phi(\rho)\mid\rho\in D\}$ is concave. Let $k=\max\limits_\rho\dim\Phi(\rho)\ge1$. Then for the volume
$\operatorname{Vol}_{k}\Phi(\rho)=W_0(\Phi(\rho))$ and for all mean cross-sectional measures 
$W_\nu(\Phi(\rho))$,
$\nu=0,1,\dots,k-1$, the function $\sqrt[k-\nu]{W_\nu(\Phi(\rho))}$ is concave on the set $D$.
			
            
            
            
          
        
      @article{ZNSL_1998_252_a0,
     author = {V. A. Zalgaller},
     title = {On intersections of convex bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a0/}
}
                      
                      
                    V. A. Zalgaller. On intersections of convex bodies. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 7-12. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a0/