$Q$-Symmetry in Condensed Matter Physics: Effective Generalized Hubbard Model with Quantum Symmetry
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 69-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We transform the Hubbard model with phonons, which has recently been shown to exhibit under particular
circumstances a quantum symmetry $\operatorname{su}(2)\oplus[\operatorname{su}(2)]_q$, into an effective electron hamiltonian, by means of a generalized Lang–Firsov transformation. The effective hamiltonian is explicitly proved to mantain the quantum symmetry, which survives even when relaxing one of the constraints on the hamiltonian parameters which must hold in the model with phonons. We investigate under which circumstances some superconducting eigenstates of the effective hamiltonian, which can be built thanks to the quantum symmetry, could possibly become metastable.
@article{ZNSL_1998_251_a6,
author = {A. Montorsi and M. Rasetti},
title = {$Q${-Symmetry} in {Condensed} {Matter} {Physics:} {Effective} {Generalized} {Hubbard} {Model} with {Quantum} {Symmetry}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {69--79},
publisher = {mathdoc},
volume = {251},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a6/}
}
TY - JOUR AU - A. Montorsi AU - M. Rasetti TI - $Q$-Symmetry in Condensed Matter Physics: Effective Generalized Hubbard Model with Quantum Symmetry JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 69 EP - 79 VL - 251 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a6/ LA - en ID - ZNSL_1998_251_a6 ER -
%0 Journal Article %A A. Montorsi %A M. Rasetti %T $Q$-Symmetry in Condensed Matter Physics: Effective Generalized Hubbard Model with Quantum Symmetry %J Zapiski Nauchnykh Seminarov POMI %D 1998 %P 69-79 %V 251 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a6/ %G en %F ZNSL_1998_251_a6
A. Montorsi; M. Rasetti. $Q$-Symmetry in Condensed Matter Physics: Effective Generalized Hubbard Model with Quantum Symmetry. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 69-79. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a6/