The Drinfeld–Sokolov reduction for a Lax difference operator with the periodic boundary conditions in the case $gl\bigl(n,\mathbb C((\lambda^{-1}))\bigr)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 233-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Matrix difference equations of a special kind are investigated by means of the dressing equations method. It is shown that these equations are gauge invariant, the corresponding flows being commutative. It is proved that the equation for the gauge equivalence class and the Lax equation are equivalent.
@article{ZNSL_1998_251_a15,
     author = {A. L. Pirozerskii},
     title = {The {Drinfeld{\textendash}Sokolov} reduction for a {Lax} difference operator with the periodic boundary conditions in the case $gl\bigl(n,\mathbb C((\lambda^{-1}))\bigr)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {233--259},
     year = {1998},
     volume = {251},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a15/}
}
TY  - JOUR
AU  - A. L. Pirozerskii
TI  - The Drinfeld–Sokolov reduction for a Lax difference operator with the periodic boundary conditions in the case $gl\bigl(n,\mathbb C((\lambda^{-1}))\bigr)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 233
EP  - 259
VL  - 251
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a15/
LA  - ru
ID  - ZNSL_1998_251_a15
ER  - 
%0 Journal Article
%A A. L. Pirozerskii
%T The Drinfeld–Sokolov reduction for a Lax difference operator with the periodic boundary conditions in the case $gl\bigl(n,\mathbb C((\lambda^{-1}))\bigr)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 233-259
%V 251
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a15/
%G ru
%F ZNSL_1998_251_a15
A. L. Pirozerskii. The Drinfeld–Sokolov reduction for a Lax difference operator with the periodic boundary conditions in the case $gl\bigl(n,\mathbb C((\lambda^{-1}))\bigr)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 233-259. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a15/