Binary problem. A spectral approach.~II
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 178-194

Voir la notice de l'article provenant de la source Math-Net.Ru

In this part of the work the “small arcs” of Part I (volume 245 of this edition) are translated to the language of the spectral components of Laplace operator. The necessary estimate for its algebraic-arithmetic part, i.e., for finite dimensional classical spaces, is obtained.
@article{ZNSL_1998_251_a12,
     author = {A. I. Vinogradov},
     title = {Binary problem. {A} spectral {approach.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {178--194},
     publisher = {mathdoc},
     volume = {251},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a12/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Binary problem. A spectral approach.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 178
EP  - 194
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a12/
LA  - ru
ID  - ZNSL_1998_251_a12
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Binary problem. A spectral approach.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 178-194
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a12/
%G ru
%F ZNSL_1998_251_a12
A. I. Vinogradov. Binary problem. A spectral approach.~II. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 178-194. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a12/