New integrable systems generated by a deformed supersymmetric algebra
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 159-177

Voir la notice de l'article provenant de la source Math-Net.Ru

New solutions of the intertwining relations for scalar quantum hamiltonians by the second order supercharges with the Lorentz and degenerate metrics are obtained. The symmetry operators for the components of the superhamiltonian are found which result in the integrability of the corresponding quantum systems. The expressions for the hamiltonians and symmetry operators in the classical limit are given. A new class of integrable classical two-dimensional systems possesing the integrals of motion which are of the fourth order in momenta.
@article{ZNSL_1998_251_a11,
     author = {A. A. Andrianov and M. V. Ioffe and D. N. Nishnianidze},
     title = {New integrable systems generated by a deformed supersymmetric algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--177},
     publisher = {mathdoc},
     volume = {251},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a11/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - M. V. Ioffe
AU  - D. N. Nishnianidze
TI  - New integrable systems generated by a deformed supersymmetric algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 159
EP  - 177
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a11/
LA  - ru
ID  - ZNSL_1998_251_a11
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A M. V. Ioffe
%A D. N. Nishnianidze
%T New integrable systems generated by a deformed supersymmetric algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 159-177
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a11/
%G ru
%F ZNSL_1998_251_a11
A. A. Andrianov; M. V. Ioffe; D. N. Nishnianidze. New integrable systems generated by a deformed supersymmetric algebra. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 159-177. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a11/