Helmgoltz equation solutions concentrated near periodical boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 83-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Existence of solutions of Helmholtz equation exponentially decaying away from a periodical boundary in the upper half-plane is proved. These solutions can exist for special form of the boundary under Dirichlet or Neumann boundary conditions. In both cases the boundary has a form of the resonator chain connected by narrow splits with the upper half-plane.
@article{ZNSL_1998_250_a6,
     author = {V. Yu. Gotlib},
     title = {Helmgoltz equation solutions concentrated near periodical boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--96},
     year = {1998},
     volume = {250},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a6/}
}
TY  - JOUR
AU  - V. Yu. Gotlib
TI  - Helmgoltz equation solutions concentrated near periodical boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 83
EP  - 96
VL  - 250
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a6/
LA  - ru
ID  - ZNSL_1998_250_a6
ER  - 
%0 Journal Article
%A V. Yu. Gotlib
%T Helmgoltz equation solutions concentrated near periodical boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 83-96
%V 250
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a6/
%G ru
%F ZNSL_1998_250_a6
V. Yu. Gotlib. Helmgoltz equation solutions concentrated near periodical boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 83-96. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a6/