Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 319-332

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider fundamental solution $E(t,\mathbf x,\mathbf s;\mathbf s_0)$ of the Cauchy problem for the one-speed linear Boltzman Equation $(\partial/\partial t +c(s,\operatorname{grad}_\mathbf x)+\gamma)E(t,\mathbf x,\mathbf s;\mathbf s_0)=\gamma\nu\int f\bigl((\mathbf s,\mathbf s')\bigr)E(t,\mathbf x,\mathbf s';\mathbf s_0)ds'+\Omega\delta(t)\delta(\mathbf x)\delta(\mathbf s-\mathbf s_0)$, assumed to be true for any $(t,\mathbf x)\in R^{n+1}$, while for $t0$ the condition $E(t,\mathbf x,\mathbf s;\mathbf s_0)=0$ holds. By using the Fourier–Laplace transform over space-time arguments the problem is reduced to investigation of an integral equation in the $\mathbf s$ argument. The uniqueness and existence of the initial problem for any fixed $\mathbf s$ within the space of tempered distributions with supports in the forward space-time cone are proved assuming $0\nu\le1$. If the scattering media are of isotropic type $f(.)=1$ the solution of the integral equation is given in the explicit form. In the limit of “small mean free paths” various weak limits of the solution are obtained with the help of tauberian type theorem for distributions.
@article{ZNSL_1998_250_a20,
     author = {Yu. B. Yanushanets},
     title = {Fundamental solution of the {Cauchy} problem corresponding to one-speed linear {Boltzman} {Equation} for anisotropic media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {319--332},
     publisher = {mathdoc},
     volume = {250},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a20/}
}
TY  - JOUR
AU  - Yu. B. Yanushanets
TI  - Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 319
EP  - 332
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a20/
LA  - ru
ID  - ZNSL_1998_250_a20
ER  - 
%0 Journal Article
%A Yu. B. Yanushanets
%T Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 319-332
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a20/
%G ru
%F ZNSL_1998_250_a20
Yu. B. Yanushanets. Fundamental solution of the Cauchy problem corresponding to one-speed linear Boltzman Equation for anisotropic media. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 319-332. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a20/