Abel–Lidskii bases in non-selfadjoint inverse boundary problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 161-190
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M$ be a manifold with bondary $\partial M\ne\varnothing$. Let $A$ be a 2-nd order elliptic PDO on $M$. Denote by $R_\lambda(x,y)$, $x$, $y\in M$, $\lambda\in\mathbb C\setminus\sigma(A)$ the Schwartz kernel of $(A-\lambda I)^{-1}$. We consider the Gel'fand inverse boundary problem of the reconstruction of $(M,A)$ via given $R_\lambda(x,y)$, $x$, $y\in\partial M$, $\lambda\in\mathbb C$. We prove that if the main symbol of $A$ satisfies some geometrical condition (Bardos–Lebeau–Rauch condition) then these data determine $M$ uniquely and $A$ to within the group of the generalized gauge transformations on $M$. The above mentioned geometric condition means, roughly speaking, that any geodesics (in the metric generated by $A$) leaves $M$.
@article{ZNSL_1998_250_a11,
author = {Ya. V. Kurylev and M. Lassas},
title = {Abel{\textendash}Lidskii bases in non-selfadjoint inverse boundary problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {161--190},
year = {1998},
volume = {250},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/}
}
Ya. V. Kurylev; M. Lassas. Abel–Lidskii bases in non-selfadjoint inverse boundary problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 161-190. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/