Abel--Lidskii bases in non-selfadjoint inverse boundary problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 161-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a manifold with bondary $\partial M\ne\varnothing$. Let $A$ be a 2-nd order elliptic PDO on $M$. Denote by $R_\lambda(x,y)$, $x$, $y\in M$, $\lambda\in\mathbb C\setminus\sigma(A)$ the Schwartz kernel of $(A-\lambda I)^{-1}$. We consider the Gel'fand inverse boundary problem of the reconstruction of $(M,A)$ via given $R_\lambda(x,y)$, $x$, $y\in\partial M$, $\lambda\in\mathbb C$. We prove that if the main symbol of $A$ satisfies some geometrical condition (Bardos–Lebeau–Rauch condition) then these data determine $M$ uniquely and $A$ to within the group of the generalized gauge transformations on $M$. The above mentioned geometric condition means, roughly speaking, that any geodesics (in the metric generated by $A$) leaves $M$.
@article{ZNSL_1998_250_a11,
     author = {Ya. V. Kurylev and M. Lassas},
     title = {Abel--Lidskii bases in non-selfadjoint inverse boundary problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {161--190},
     publisher = {mathdoc},
     volume = {250},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/}
}
TY  - JOUR
AU  - Ya. V. Kurylev
AU  - M. Lassas
TI  - Abel--Lidskii bases in non-selfadjoint inverse boundary problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 161
EP  - 190
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/
LA  - ru
ID  - ZNSL_1998_250_a11
ER  - 
%0 Journal Article
%A Ya. V. Kurylev
%A M. Lassas
%T Abel--Lidskii bases in non-selfadjoint inverse boundary problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 161-190
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/
%G ru
%F ZNSL_1998_250_a11
Ya. V. Kurylev; M. Lassas. Abel--Lidskii bases in non-selfadjoint inverse boundary problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 161-190. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a11/