Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 7-21
Voir la notice du chapitre de livre
The paper deals with an approach to the Inverse Problem based upon their relations to the Boundary Control Theory (so-called the BC-method). A procedure of recovering a nonsymmetric matrix-function (potential) given on a semiaxis via the dynamical response operator is described. The results of numerical testing are demonstrated.
@article{ZNSL_1998_250_a0,
author = {S. A. Avdonin and M. I. Belishev and Yu. S. Rozhkov},
title = {Dynamical inverse problem for nonselfadjoint {Sturm{\textendash}Liouville} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--21},
year = {1998},
volume = {250},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/}
}
TY - JOUR AU - S. A. Avdonin AU - M. I. Belishev AU - Yu. S. Rozhkov TI - Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 7 EP - 21 VL - 250 UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/ LA - ru ID - ZNSL_1998_250_a0 ER -
S. A. Avdonin; M. I. Belishev; Yu. S. Rozhkov. Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/