Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 7-21
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with an approach to the Inverse Problem based upon their relations to the Boundary Control Theory (so-called the BC-method). A procedure of recovering a nonsymmetric matrix-function (potential) given on a semiaxis via the dynamical response operator is described. The results of numerical testing are demonstrated.
@article{ZNSL_1998_250_a0,
     author = {S. A. Avdonin and M. I. Belishev and Yu. S. Rozhkov},
     title = {Dynamical inverse problem for nonselfadjoint {Sturm{\textendash}Liouville} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--21},
     year = {1998},
     volume = {250},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/}
}
TY  - JOUR
AU  - S. A. Avdonin
AU  - M. I. Belishev
AU  - Yu. S. Rozhkov
TI  - Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 7
EP  - 21
VL  - 250
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/
LA  - ru
ID  - ZNSL_1998_250_a0
ER  - 
%0 Journal Article
%A S. A. Avdonin
%A M. I. Belishev
%A Yu. S. Rozhkov
%T Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 7-21
%V 250
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/
%G ru
%F ZNSL_1998_250_a0
S. A. Avdonin; M. I. Belishev; Yu. S. Rozhkov. Dynamical inverse problem for nonselfadjoint Sturm–Liouville operator. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a0/