Uniqueness of the solution of the first mixed problem for a two-dimentional nonlinear parabolic equation
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 60-69
Voir la notice de l'article provenant de la source Math-Net.Ru
The first mixed problem for two-dimentional nonlinear parabolic equation with nonlinear second derivatives of a desired function is considered. We assume that the solution possessing continuous second derivatives with respect to coordinate variables exists in a closed cylinder under some restrictions on initial data of the problem. The uniqueness of this problem is proved by using the longitudinal version of the method of lines.
@article{ZNSL_1998_248_a3,
author = {A. P. Kubanskaya},
title = {Uniqueness of the solution of the first mixed problem for a two-dimentional nonlinear parabolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {60--69},
publisher = {mathdoc},
volume = {248},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a3/}
}
TY - JOUR AU - A. P. Kubanskaya TI - Uniqueness of the solution of the first mixed problem for a two-dimentional nonlinear parabolic equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 60 EP - 69 VL - 248 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a3/ LA - ru ID - ZNSL_1998_248_a3 ER -
A. P. Kubanskaya. Uniqueness of the solution of the first mixed problem for a two-dimentional nonlinear parabolic equation. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 60-69. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a3/