A convergence theorem for the Newton method
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 242-246
Voir la notice de l'article provenant de la source Math-Net.Ru
The convergence of the Newton method is established dor equations of the form $Tx+F(x)=0$, where
$T$ is an unbounded operator, and the Fréchet derivative $F'(u)$ of the operator $F(u)$ satisfies Hölder's
condition.
@article{ZNSL_1998_248_a13,
author = {M. N. Yakovlev},
title = {A convergence theorem for the {Newton} method},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {242--246},
publisher = {mathdoc},
volume = {248},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/}
}
M. N. Yakovlev. A convergence theorem for the Newton method. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 242-246. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/