A convergence theorem for the Newton method
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 242-246

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence of the Newton method is established dor equations of the form $Tx+F(x)=0$, where $T$ is an unbounded operator, and the Fréchet derivative $F'(u)$ of the operator $F(u)$ satisfies Hölder's condition.
@article{ZNSL_1998_248_a13,
     author = {M. N. Yakovlev},
     title = {A convergence theorem for the {Newton} method},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--246},
     publisher = {mathdoc},
     volume = {248},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - A convergence theorem for the Newton method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 242
EP  - 246
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/
LA  - ru
ID  - ZNSL_1998_248_a13
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T A convergence theorem for the Newton method
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 242-246
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/
%G ru
%F ZNSL_1998_248_a13
M. N. Yakovlev. A convergence theorem for the Newton method. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 242-246. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a13/