Solvability of nonlinear equations in a cone of a Banach space
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 225-230
Voir la notice de l'article provenant de la source Math-Net.Ru
The solvability conditions for the equation $Tu+F(u)=0$ are found in the case where the operator
$[T+F'(u)]^{-1}$ exists only for $u\in K$, where $K$ is a cone in the Banach space $X$. An application concerning the solvability of boundary-value problems for a system of second-order differential equations is provided.
@article{ZNSL_1998_248_a11,
author = {M. N. Yakovlev},
title = {Solvability of nonlinear equations in a cone of a {Banach} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {225--230},
publisher = {mathdoc},
volume = {248},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a11/}
}
M. N. Yakovlev. Solvability of nonlinear equations in a cone of a Banach space. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 225-230. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a11/