Implicit functions determined by equations with unbounded operators and the solvability of operator equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 216-224
Cet article a éte moissonné depuis la source Math-Net.Ru
For implicit functions determined by the equation $Tx+F(\lambda,x)=0$, where $T$ is an unbounded operator, existence and differentiability conditions are established. Applications concerning the solvability conditions for equations of the form $Tx+f(x)=0$ are considered.
@article{ZNSL_1998_248_a10,
author = {M. N. Yakovlev},
title = {Implicit functions determined by equations with unbounded operators and the solvability of operator equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {216--224},
year = {1998},
volume = {248},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a10/}
}
TY - JOUR AU - M. N. Yakovlev TI - Implicit functions determined by equations with unbounded operators and the solvability of operator equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 216 EP - 224 VL - 248 UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a10/ LA - ru ID - ZNSL_1998_248_a10 ER -
M. N. Yakovlev. Implicit functions determined by equations with unbounded operators and the solvability of operator equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 216-224. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a10/