Factorized sparse approximate inverse preconditionings~III. Iterative construction of preconditioners.
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 17-48

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents new results of the theoretical study of factorized sparse approximate inverse (FSAI)preconditioners. In particular, the effect of the a posteriori Jacobi scaling and the possibility of constructing such preconditioners iteratively are analyzed. A simple stopping criterion for the termination of local iterations for constructing approximate FSAI preconditioners using the PCG method is proposed. The results of numirical experimernts with 3D finite-element problems from linear elasticity are presented.
@article{ZNSL_1998_248_a1,
     author = {A. Yu. Yeremin and L. Yu. Kolotilina and A. A. Nikishin},
     title = {Factorized sparse approximate inverse {preconditionings~III.} {Iterative} construction of preconditioners.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--48},
     publisher = {mathdoc},
     volume = {248},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a1/}
}
TY  - JOUR
AU  - A. Yu. Yeremin
AU  - L. Yu. Kolotilina
AU  - A. A. Nikishin
TI  - Factorized sparse approximate inverse preconditionings~III. Iterative construction of preconditioners.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 17
EP  - 48
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a1/
LA  - ru
ID  - ZNSL_1998_248_a1
ER  - 
%0 Journal Article
%A A. Yu. Yeremin
%A L. Yu. Kolotilina
%A A. A. Nikishin
%T Factorized sparse approximate inverse preconditionings~III. Iterative construction of preconditioners.
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 17-48
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a1/
%G ru
%F ZNSL_1998_248_a1
A. Yu. Yeremin; L. Yu. Kolotilina; A. A. Nikishin. Factorized sparse approximate inverse preconditionings~III. Iterative construction of preconditioners.. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIII, Tome 248 (1998), pp. 17-48. http://geodesic.mathdoc.fr/item/ZNSL_1998_248_a1/