On a uniqueness of the recovering low-order terms in the wave equation via dynamical boundary measurements
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 55-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An approach to the dynamical inverse problems based upon their relations to the Boundary Control Theory (so-called $BC$-method) is developed. The method is applied to the problem of reconstruction of a vector field in a domain via the response operator (the dynamical Dirichlet-to-Neumann map). A peculiarity of the case under consideration is that the operator which governs an evolution of the corresponding dynamical system is nonselfadjoint. The paper gives a brief description of technique of the $BC$-method.
@article{ZNSL_1997_249_a3,
     author = {M. I. Belishev},
     title = {On a uniqueness of the recovering low-order terms in the wave equation via dynamical boundary measurements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--76},
     year = {1997},
     volume = {249},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a3/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - On a uniqueness of the recovering low-order terms in the wave equation via dynamical boundary measurements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 55
EP  - 76
VL  - 249
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a3/
LA  - ru
ID  - ZNSL_1997_249_a3
ER  - 
%0 Journal Article
%A M. I. Belishev
%T On a uniqueness of the recovering low-order terms in the wave equation via dynamical boundary measurements
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 55-76
%V 249
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a3/
%G ru
%F ZNSL_1997_249_a3
M. I. Belishev. On a uniqueness of the recovering low-order terms in the wave equation via dynamical boundary measurements. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 55-76. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a3/