On properties of the free boundary in the neighborhood of contact with the given boundary
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 303-312
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the simpliest elliptic obstacle problem, the behavior of the free boundary in the vicinity of the points where it
contacts the prescribed boundary of the domain is studied. The eairlier result concerning the $C^1$ regularity of the boundary $\partial\mathscr N$ of the noncoincidence set is strengthened. It is proved that the assumed earlier Lipschitz condition on $\partial\mathscr N$ can be omitted.
			
            
            
            
          
        
      @article{ZNSL_1997_249_a14,
     author = {N. N. Ural'tseva},
     title = {On properties of the free boundary in the neighborhood of contact with the given boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--312},
     publisher = {mathdoc},
     volume = {249},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/}
}
                      
                      
                    TY - JOUR AU - N. N. Ural'tseva TI - On properties of the free boundary in the neighborhood of contact with the given boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 303 EP - 312 VL - 249 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/ LA - ru ID - ZNSL_1997_249_a14 ER -
N. N. Ural'tseva. On properties of the free boundary in the neighborhood of contact with the given boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 303-312. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/