On properties of the free boundary in the neighborhood of contact with the given boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 303-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the simpliest elliptic obstacle problem, the behavior of the free boundary in the vicinity of the points where it contacts the prescribed boundary of the domain is studied. The eairlier result concerning the $C^1$ regularity of the boundary $\partial\mathscr N$ of the noncoincidence set is strengthened. It is proved that the assumed earlier Lipschitz condition on $\partial\mathscr N$ can be omitted.
@article{ZNSL_1997_249_a14,
     author = {N. N. Ural'tseva},
     title = {On properties of the free boundary in the neighborhood of contact with the given boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {303--312},
     year = {1997},
     volume = {249},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/}
}
TY  - JOUR
AU  - N. N. Ural'tseva
TI  - On properties of the free boundary in the neighborhood of contact with the given boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 303
EP  - 312
VL  - 249
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/
LA  - ru
ID  - ZNSL_1997_249_a14
ER  - 
%0 Journal Article
%A N. N. Ural'tseva
%T On properties of the free boundary in the neighborhood of contact with the given boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 303-312
%V 249
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/
%G ru
%F ZNSL_1997_249_a14
N. N. Ural'tseva. On properties of the free boundary in the neighborhood of contact with the given boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 303-312. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a14/