On the estimate of maximum modulus of solution of stationary problem for the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 294-302
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the solution of a nonlinear stationary problem for the Navier–Stokes equations in a bounded domain $\Omega\subset\mathbb R^3$ with the boundary conditions $\vec v\big|_{\partial\Omega}=\vec a(x)$ satisfies the inequality
$$
\sup_{x\in\Omega}|\vec v(x)|\le c\Bigl(\,\sup_{x\in\partial\Omega}|\vec a(x)|\Bigr)
$$
for arbitrary Reynolds number.
@article{ZNSL_1997_249_a13,
author = {V. A. Solonnikov},
title = {On the estimate of maximum modulus of solution of stationary problem for the {Navier--Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {294--302},
publisher = {mathdoc},
volume = {249},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a13/}
}
TY - JOUR AU - V. A. Solonnikov TI - On the estimate of maximum modulus of solution of stationary problem for the Navier--Stokes equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 294 EP - 302 VL - 249 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a13/ LA - ru ID - ZNSL_1997_249_a13 ER -
V. A. Solonnikov. On the estimate of maximum modulus of solution of stationary problem for the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 294-302. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a13/