A~posteriori error estimates for approximate solutions of variational problems with power growtn functionals
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 244-255
Voir la notice de l'article provenant de la source Math-Net.Ru
The present paper is concerned with the derivation of upper estimates of the difference $\|v-u\|$ where $u$ is a minimizer of a variational problem and $v$ is an element of the corresponding functional space. By using
methods of duality theory, we derive a majorizing functional, which explicitly depends only on $v$ and the data
of the problem. The advantage of this majorant is that it does not contain unknown constants and can be
directly computed by simple numerical methods.
@article{ZNSL_1997_249_a11,
author = {S. I. Repin},
title = {A~posteriori error estimates for approximate solutions of variational problems with power growtn functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {244--255},
publisher = {mathdoc},
volume = {249},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a11/}
}
TY - JOUR AU - S. I. Repin TI - A~posteriori error estimates for approximate solutions of variational problems with power growtn functionals JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 244 EP - 255 VL - 249 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a11/ LA - en ID - ZNSL_1997_249_a11 ER -
S. I. Repin. A~posteriori error estimates for approximate solutions of variational problems with power growtn functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 244-255. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a11/