On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 20-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quasilinear nondiagonal parabolic systems with quadratic growth on the gradient in a parabolic cylinder $Q$. Under Dirichlet and Neumann boundary conditions partial Hölder continuity up to the lateral surface of $Q$ of solutions $u\in W_2^{1,1} (Q)\cap L^\infty(Q)$ is proved. Hausdorff dimension of a singular set is estimated. In the proof we get of the maximum principle theorem for corresponding model linear problems.
@article{ZNSL_1997_249_a1,
     author = {A. A. Arkhipova},
     title = {On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--39},
     publisher = {mathdoc},
     volume = {249},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a1/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 20
EP  - 39
VL  - 249
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a1/
LA  - en
ID  - ZNSL_1997_249_a1
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 20-39
%V 249
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a1/
%G en
%F ZNSL_1997_249_a1
A. A. Arkhipova. On~the partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 20-39. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a1/