Nuclearity of imbedding operators of Sobolev classes into weighted spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 156-165
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be an open set in $\mathbf R^m$. Denote by $d_x$ the distance from a point $x$ to the boundary of $\Omega$:
$$
d_x=\inf_{y\in\partial\Omega}|x-y|;
$$
if $\Omega=\mathbf R^m$, then $d_x=1+|x|$. Define the class $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ as the closure of $\mathbf C^\infty_0(\Omega)$ with respect to the norm
$$
\|f\|_{\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)}=\left(\int\limits_\Omega\left(\sum_{|\beta|=l}|D^\beta f|^p d^{-\lambda}_x+|f|^p d^{-pl-\lambda}_x\right)dx\right)^{1/p};
$$
here $l=1,2$; $1\le p\infty$; $\lambda\in(-\infty,\infty)$. Let $\mu$ be a measure in $\Omega$ and $\mathbf L_q(\mu)$ the Lebesgue space. A criterion for the nuclearity of the imbedding of $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ into $\mathbf L_q(\Omega)$ is given for $l>m$.
@article{ZNSL_1997_247_a9,
author = {O. G. Parfenov},
title = {Nuclearity of imbedding operators of {Sobolev} classes into weighted spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {156--165},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/}
}
O. G. Parfenov. Nuclearity of imbedding operators of Sobolev classes into weighted spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 156-165. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/