Nuclearity of imbedding operators of Sobolev classes into weighted spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 156-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Omega$ be an open set in $\mathbf R^m$. Denote by $d_x$ the distance from a point $x$ to the boundary of $\Omega$: $$ d_x=\inf_{y\in\partial\Omega}|x-y|; $$ if $\Omega=\mathbf R^m$, then $d_x=1+|x|$. Define the class $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ as the closure of $\mathbf C^\infty_0(\Omega)$ with respect to the norm $$ \|f\|_{\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)}=\left(\int\limits_\Omega\left(\sum_{|\beta|=l}|D^\beta f|^p d^{-\lambda}_x+|f|^p d^{-pl-\lambda}_x\right)dx\right)^{1/p}; $$ here $l=1,2$; $1\le p<\infty$; $\lambda\in(-\infty,\infty)$. Let $\mu$ be a measure in $\Omega$ and $\mathbf L_q(\mu)$ the Lebesgue space. A criterion for the nuclearity of the imbedding of $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ into $\mathbf L_q(\Omega)$ is given for $l>m$.
@article{ZNSL_1997_247_a9,
     author = {O. G. Parfenov},
     title = {Nuclearity of imbedding operators of {Sobolev} classes into weighted spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--165},
     year = {1997},
     volume = {247},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Nuclearity of imbedding operators of Sobolev classes into weighted spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 156
EP  - 165
VL  - 247
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/
LA  - ru
ID  - ZNSL_1997_247_a9
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Nuclearity of imbedding operators of Sobolev classes into weighted spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 156-165
%V 247
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/
%G ru
%F ZNSL_1997_247_a9
O. G. Parfenov. Nuclearity of imbedding operators of Sobolev classes into weighted spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 156-165. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a9/