Quantitative theorems on Whitney type coverings
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 96-113

Voir la notice de l'article provenant de la source Math-Net.Ru

The crucial point of the construction of an almost optimal decomposition for the couple $(L_q,W^k_p)$ was the covering theorem in which the parameter $\alpha$ ($\alpha$-capacity) is controlled. Here we give a detailed proof of this theorem for negative $\alpha$.
@article{ZNSL_1997_247_a6,
     author = {N. Ya. Kruglyak},
     title = {Quantitative theorems on {Whitney} type coverings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--113},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a6/}
}
TY  - JOUR
AU  - N. Ya. Kruglyak
TI  - Quantitative theorems on Whitney type coverings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 96
EP  - 113
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a6/
LA  - ru
ID  - ZNSL_1997_247_a6
ER  - 
%0 Journal Article
%A N. Ya. Kruglyak
%T Quantitative theorems on Whitney type coverings
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 96-113
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a6/
%G ru
%F ZNSL_1997_247_a6
N. Ya. Kruglyak. Quantitative theorems on Whitney type coverings. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 96-113. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a6/