Operators, not similar to a contraction: Pisier's counterexample via singular integrals
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 79-95
Voir la notice de l'article provenant de la source Math-Net.Ru
The main difference of this exposition of Pisier's counterexample from the original one is that in the proof of the key inequality probabilistic considerations (like Brownian motion) are replaced by some standard facts
from the theory of Calderon–Zygmund operators.
@article{ZNSL_1997_247_a5,
author = {S. V. Kislyakov},
title = {Operators, not similar to a contraction: {Pisier's} counterexample via singular integrals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--95},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a5/}
}
S. V. Kislyakov. Operators, not similar to a contraction: Pisier's counterexample via singular integrals. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 79-95. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a5/