The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 26-45
Voir la notice de l'article provenant de la source Math-Net.Ru
The sharp constant (uniformly in $n$) is found in a Jackson-type inequality involving the Rogozinski sums
of order $n$ and the second modulus of continuity with the step $\pi/(n+1)$.
@article{ZNSL_1997_247_a2,
author = {O. L. Vinogradov},
title = {The sharp constant in the estimate of the {Rogozinski} sums deviation in terms of the second modulus of continuity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--45},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/}
}
TY - JOUR AU - O. L. Vinogradov TI - The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 26 EP - 45 VL - 247 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/ LA - ru ID - ZNSL_1997_247_a2 ER -
%0 Journal Article %A O. L. Vinogradov %T The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity %J Zapiski Nauchnykh Seminarov POMI %D 1997 %P 26-45 %V 247 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/ %G ru %F ZNSL_1997_247_a2
O. L. Vinogradov. The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 26-45. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/