The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 26-45

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp constant (uniformly in $n$) is found in a Jackson-type inequality involving the Rogozinski sums of order $n$ and the second modulus of continuity with the step $\pi/(n+1)$.
@article{ZNSL_1997_247_a2,
     author = {O. L. Vinogradov},
     title = {The sharp constant in the estimate of the {Rogozinski} sums deviation in terms of the second modulus of continuity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--45},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 26
EP  - 45
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/
LA  - ru
ID  - ZNSL_1997_247_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 26-45
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/
%G ru
%F ZNSL_1997_247_a2
O. L. Vinogradov. The sharp constant in the estimate of the Rogozinski sums deviation in terms of the second modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 26-45. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a2/