Concerning an analog of the Stolz angle for the unit ball in~$\mathbb C^n$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 276-297
Voir la notice de l'article provenant de la source Math-Net.Ru
By a $(\rho,c,q)$-wedge in the unit ball $\mathbb B^n\subset\mathbb C^n$ we mean the union of the sets $\mathbb B^n_\rho$ and $E_{c,q}(e_0)$, where $\mathbb B^n_\rho=\{z\in\mathbb C^n:|z|\le\rho\}$,
$0\rho1$, $|e_0|=1$, $0$, $\rho>1-\frac{(1-q)^2}{2(1+c^2)}$,
\begin{gather*}
E_{c,q}(e_0)=\{z\in\mathbb B^n:|\operatorname{Im}(1-(z,e_0))|\le c\operatorname{Re}(1-(z,e_0));
\\
|z|^2-|(z,e_0)|^2\le q(1-|(z,e_0)|^2)\}
\end{gather*}
($(z,\xi)$ is the usual scalar product in $\mathbb C^n$). We denote by $T_a$, $a\in\mathbb B^n$, $a\ne0$, the intersection of $\mathbb B^n$ and the hyperplane $\{z:(z,a)=|a|^2\}$. The paper contains a description of the sets $Z$ of the form $\bigcup\limits_{a\in A} T_a$, where $A$ belongs to a finite union of $(\rho,c,q)$-wedges with $0$ that may occur as zero-sets or interpolation sets for functions belonging to $H^\infty(\mathbb B^n)$.
@article{ZNSL_1997_247_a17,
author = {N. A. Shirokov},
title = {Concerning an analog of the {Stolz} angle for the unit ball in~$\mathbb C^n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {276--297},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a17/}
}
N. A. Shirokov. Concerning an analog of the Stolz angle for the unit ball in~$\mathbb C^n$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 276-297. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a17/