Uniqueness theorems for analytic vector-valued functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 242-267

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Berezin transformation, we give a multidimensional analog of a uniqueness theorem of N.Nikolski concerning distance functions and subspaces of a Hilbert space of analytic functions. Then, we establish some uniqueness properties drawing connections between two analytic $X$-valued functions $F$ and $G$ that satisfy $\|F(z)\|\equiv\|G(z)\|,\,\forall z\in\Omega$, where $X$ is a Banach space and $\Omega$ a connected domain in $\mathbb C^n$. The particular case where $X=\ell_n^p$ and $\Omega=\mathbb D=\{z\in\mathbb C\,:\,|z|1\,\}$ will lead us to the notion of flexible and inflexible functions. We give a complete description of these functions when $p=+\infty,\,n\in\mathbb N^*$ and when $n=2,\,1\le p\le+\infty$.
@article{ZNSL_1997_247_a15,
     author = {E. Fricain},
     title = {Uniqueness theorems for analytic vector-valued functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--267},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/}
}
TY  - JOUR
AU  - E. Fricain
TI  - Uniqueness theorems for analytic vector-valued functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 242
EP  - 267
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/
LA  - en
ID  - ZNSL_1997_247_a15
ER  - 
%0 Journal Article
%A E. Fricain
%T Uniqueness theorems for analytic vector-valued functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 242-267
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/
%G en
%F ZNSL_1997_247_a15
E. Fricain. Uniqueness theorems for analytic vector-valued functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 242-267. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/