Uniqueness theorems for analytic vector-valued functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 242-267
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the Berezin transformation, we give a multidimensional analog of a uniqueness theorem of N.Nikolski concerning distance functions and subspaces of a Hilbert space of analytic functions. Then, we establish some uniqueness properties drawing connections between two analytic $X$-valued functions $F$ and $G$ that satisfy $\|F(z)\|\equiv\|G(z)\|,\,\forall z\in\Omega$, where $X$ is a Banach space and $\Omega$ a connected domain in $\mathbb C^n$. The particular case where $X=\ell_n^p$ and $\Omega=\mathbb D=\{z\in\mathbb C\,:\,|z|<1\,\}$ will lead us to the notion of flexible and inflexible functions. We give a complete description of these functions when $p=+\infty,\,n\in\mathbb N^*$ and when $n=2,\,1\le p\le+\infty$.
@article{ZNSL_1997_247_a15,
author = {E. Fricain},
title = {Uniqueness theorems for analytic vector-valued functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {242--267},
year = {1997},
volume = {247},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/}
}
E. Fricain. Uniqueness theorems for analytic vector-valued functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 242-267. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a15/