Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 237-241
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ a gap in the spectrum of $A$, $B=A+V$, where, in general, the perturbation operator $V$ is unbounded. We establish some abstract conditions under which the
spectrum of $B$ on $(\alpha,\beta)$ is discrete; does not accumulate to $\beta$; is finite. An estimate of the number of the eigenvalues of $B$ on $(\alpha,\beta)$ is obtained.
@article{ZNSL_1997_247_a14,
author = {V. A. Sloushch},
title = {Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {237--241},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/}
}
TY - JOUR AU - V. A. Sloushch TI - Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 237 EP - 241 VL - 247 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/ LA - ru ID - ZNSL_1997_247_a14 ER -
V. A. Sloushch. Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 237-241. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/