Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 237-241

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ a gap in the spectrum of $A$, $B=A+V$, where, in general, the perturbation operator $V$ is unbounded. We establish some abstract conditions under which the spectrum of $B$ on $(\alpha,\beta)$ is discrete; does not accumulate to $\beta$; is finite. An estimate of the number of the eigenvalues of $B$ on $(\alpha,\beta)$ is obtained.
@article{ZNSL_1997_247_a14,
     author = {V. A. Sloushch},
     title = {Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--241},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/}
}
TY  - JOUR
AU  - V. A. Sloushch
TI  - Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 237
EP  - 241
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/
LA  - ru
ID  - ZNSL_1997_247_a14
ER  - 
%0 Journal Article
%A V. A. Sloushch
%T Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 237-241
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/
%G ru
%F ZNSL_1997_247_a14
V. A. Sloushch. Discrete spectrum in the spectral gaps of a~selfadjoint operator for unbounded perturbations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 237-241. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a14/