Bernstein widths of embedding operators of Lebesgue spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 166-169
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $(K,\mu)$ be a measurable space, and let $\mu(K)=1$.
Let
$$
\textrm I_{p,q}\colon L^p\,(K,\mu)\longrightarrow L^q(K,\mu)
$$
be the embedding operator. The Bernstein widths of $\textrm I_{p,q}$ are considered.
@article{ZNSL_1997_247_a10,
author = {O. G. Parfenov and M. W. Slupko},
title = {Bernstein widths of embedding operators of {Lebesgue} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--169},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/}
}
O. G. Parfenov; M. W. Slupko. Bernstein widths of embedding operators of Lebesgue spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 166-169. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/