Bernstein widths of embedding operators of Lebesgue spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 166-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(K,\mu)$ be a measurable space, and let $\mu(K)=1$. Let $$ \textrm I_{p,q}\colon L^p\,(K,\mu)\longrightarrow L^q(K,\mu) $$ be the embedding operator. The Bernstein widths of $\textrm I_{p,q}$ are considered.
@article{ZNSL_1997_247_a10,
     author = {O. G. Parfenov and M. W. Slupko},
     title = {Bernstein widths of embedding operators of {Lebesgue} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--169},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/}
}
TY  - JOUR
AU  - O. G. Parfenov
AU  - M. W. Slupko
TI  - Bernstein widths of embedding operators of Lebesgue spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 166
EP  - 169
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/
LA  - ru
ID  - ZNSL_1997_247_a10
ER  - 
%0 Journal Article
%A O. G. Parfenov
%A M. W. Slupko
%T Bernstein widths of embedding operators of Lebesgue spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 166-169
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/
%G ru
%F ZNSL_1997_247_a10
O. G. Parfenov; M. W. Slupko. Bernstein widths of embedding operators of Lebesgue spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 166-169. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a10/