Polyanalytic forms on compact Riemann surfaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 15-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A sheaf of differentials on a compact Riemann surface supplied with a projective structure is said to be $n$-analytic if in a local projective coordinate the sections of the sheaf satisfy the differential equation $\partial^nf/\partial\overline z^n=0$. For the projective structure induced by a covering mapping from the disk, an explicit characterization of the space of cross-sections and of the space of first cohomologies of the $n$-analytic sheaf is given in terms of known spaces of sections of certain holomorphic sheaves.
@article{ZNSL_1997_247_a1,
     author = {A. V. Vasin},
     title = {Polyanalytic forms on compact {Riemann} surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a1/}
}
TY  - JOUR
AU  - A. V. Vasin
TI  - Polyanalytic forms on compact Riemann surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 15
EP  - 25
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a1/
LA  - ru
ID  - ZNSL_1997_247_a1
ER  - 
%0 Journal Article
%A A. V. Vasin
%T Polyanalytic forms on compact Riemann surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 15-25
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a1/
%G ru
%F ZNSL_1997_247_a1
A. V. Vasin. Polyanalytic forms on compact Riemann surfaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 15-25. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a1/