On approximation of the plane sections of convex bodies
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 174-183

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological methods are applied to the proof of three theorems concerning approximation of plane sections of convex bodies by affine-regular polygons, ellipses, or circles. One of the theorems is as follows. For every interior point $O$ of any convex body $K\subset\mathbb R^3$ there is a plane section of $K$ that passes through $O$ and admit an inscribed affine-regular hexagon centered at $O$. For every interior point $O$ of any convex body $K\subset\mathbb R^4$ there is a two-dimensional plane section of $K$ that passes through $O$ and admits an inscribed affine-regular octagon centered at $O$.
@article{ZNSL_1997_246_a9,
     author = {V. V. Makeev},
     title = {On approximation of the plane sections of convex bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--183},
     publisher = {mathdoc},
     volume = {246},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a9/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On approximation of the plane sections of convex bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 174
EP  - 183
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a9/
LA  - ru
ID  - ZNSL_1997_246_a9
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On approximation of the plane sections of convex bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 174-183
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a9/
%G ru
%F ZNSL_1997_246_a9
V. V. Makeev. On approximation of the plane sections of convex bodies. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 174-183. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a9/