The topology and the Lorentz-invariant pseudo-Riemannian metric of the manifold of directions in the
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 141-151
Voir la notice de l'article provenant de la source Math-Net.Ru
In the mathematical model of the special theory of relativity the two-dimensional Minkowski subspace is interpreted as a one-dimensional direction of the physical space. The manifold of such planes is naturally provided with the structure of a pseudoriemann manifold, the group of isochronous Lorentz transformations on which acts by isometries transitively. The present paper is dedicated to the study of the topology and
metric geometry of this manifold.
@article{ZNSL_1997_246_a7,
author = {S. E. Kozlov},
title = {The topology and the {Lorentz-invariant} {pseudo-Riemannian} metric of the manifold of directions in the},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--151},
publisher = {mathdoc},
volume = {246},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a7/}
}
TY - JOUR AU - S. E. Kozlov TI - The topology and the Lorentz-invariant pseudo-Riemannian metric of the manifold of directions in the JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 141 EP - 151 VL - 246 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a7/ LA - ru ID - ZNSL_1997_246_a7 ER -
S. E. Kozlov. The topology and the Lorentz-invariant pseudo-Riemannian metric of the manifold of directions in the. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 141-151. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a7/