Geometry of the real Grassmannian manifolds. Parts I, II
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 84-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The properties of the exterior algebra $\Lambda(\mathbb R^n)$ studied in the paper are related to the Euclidean structure in this algebra induced by the scalar product in $\mathbb R^n$. A geometric interpretation of the interior multiplication for decomposable polyvectors is given. The Cartan criterion of decomposability for the polyvectors is formulated in a coordinateless form. The Pluccer model of the real Grassmannian manifold is realized as a submanifold of the Euclidean space $\Lambda(\mathbb R^n)$, and the isometry of this submanifold onto the classical Grassmannian manifold with $SO(n)$-invariant metric is indicated. For the bivectors the canonical decomposition is described.
@article{ZNSL_1997_246_a4,
     author = {S. E. Kozlov},
     title = {Geometry of the real {Grassmannian} manifolds. {Parts~I,~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--107},
     year = {1997},
     volume = {246},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a4/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Geometry of the real Grassmannian manifolds. Parts I, II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 84
EP  - 107
VL  - 246
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a4/
LA  - ru
ID  - ZNSL_1997_246_a4
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Geometry of the real Grassmannian manifolds. Parts I, II
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 84-107
%V 246
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a4/
%G ru
%F ZNSL_1997_246_a4
S. E. Kozlov. Geometry of the real Grassmannian manifolds. Parts I, II. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 84-107. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a4/