A representation of functions of several variables as the difference of convex functions
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 36-65
Voir la notice de l'article provenant de la source Math-Net.Ru
If a function $f\colon D^n\to \mathbb R$, where $D^n$ is a convex compact set in $\mathbb R^n$, admits a decomposition $f=g-h$ with convex $g,h$ where $h$ is upper bounded, then there exists such a
decomposition which is in some sense “minimal”. A recurrent procedure converging to that decomposition is
given. For piecewise linear functions $f$, finite algorithms of those decompositions for $n=1,2$ are given.
A number of examples clarifying some unexpected effects is represented. Problems are formulated.
@article{ZNSL_1997_246_a2,
author = {V. A. Zalgaller},
title = {A representation of functions of several variables as the difference of convex functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--65},
publisher = {mathdoc},
volume = {246},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/}
}
TY - JOUR AU - V. A. Zalgaller TI - A representation of functions of several variables as the difference of convex functions JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 36 EP - 65 VL - 246 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/ LA - ru ID - ZNSL_1997_246_a2 ER -
V. A. Zalgaller. A representation of functions of several variables as the difference of convex functions. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 36-65. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/