A representation of functions of several variables as the difference of convex functions
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 36-65

Voir la notice de l'article provenant de la source Math-Net.Ru

If a function $f\colon D^n\to \mathbb R$, where $D^n$ is a convex compact set in $\mathbb R^n$, admits a decomposition $f=g-h$ with convex $g,h$ where $h$ is upper bounded, then there exists such a decomposition which is in some sense “minimal”. A recurrent procedure converging to that decomposition is given. For piecewise linear functions $f$, finite algorithms of those decompositions for $n=1,2$ are given. A number of examples clarifying some unexpected effects is represented. Problems are formulated.
@article{ZNSL_1997_246_a2,
     author = {V. A. Zalgaller},
     title = {A representation of functions of several variables as the difference of convex functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--65},
     publisher = {mathdoc},
     volume = {246},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/}
}
TY  - JOUR
AU  - V. A. Zalgaller
TI  - A representation of functions of several variables as the difference of convex functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 36
EP  - 65
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/
LA  - ru
ID  - ZNSL_1997_246_a2
ER  - 
%0 Journal Article
%A V. A. Zalgaller
%T A representation of functions of several variables as the difference of convex functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 36-65
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/
%G ru
%F ZNSL_1997_246_a2
V. A. Zalgaller. A representation of functions of several variables as the difference of convex functions. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 36-65. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a2/