Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 191-195

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is dual to an earlier theorem by the author concerning affine images of a cubeoctahedron inscribed in a three-dimensional convex body. The rhombododecaedron is the polytope dual to the cubeoctahedron; the latter is the convex hull of the midpoints of the edges of a cube. Theorem. Every convex body in $\mathbb R^3$ except for those mentioned below admits an affine-circumscribed rhombododecaedron. A possible exception is a body containing a parallelogram $P$ and contained in a cylinder over $P$. The author does not know whether there is a three-dimensional convex body exceptional on the sense of the above theorem.
@article{ZNSL_1997_246_a11,
     author = {V. V. Makeev},
     title = {Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--195},
     publisher = {mathdoc},
     volume = {246},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a11/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 191
EP  - 195
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a11/
LA  - ru
ID  - ZNSL_1997_246_a11
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 191-195
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a11/
%G ru
%F ZNSL_1997_246_a11
V. V. Makeev. Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 191-195. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a11/