Visibility curves for ovals
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 13-35

Voir la notice de l'article provenant de la source Math-Net.Ru

For $C^1$-smooth strictly convex oval, the class of visibility curves is introduced. The equivalence of four definitions of this class of curves is proved, and the possible types of the shortest curves of visibility are studied. Several exstremal problems for the curve of visibility of the circle are solved.
@article{ZNSL_1997_246_a1,
     author = {M. L. Egorov and V. A. Zalgaller},
     title = {Visibility curves for ovals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--35},
     publisher = {mathdoc},
     volume = {246},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a1/}
}
TY  - JOUR
AU  - M. L. Egorov
AU  - V. A. Zalgaller
TI  - Visibility curves for ovals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 13
EP  - 35
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a1/
LA  - ru
ID  - ZNSL_1997_246_a1
ER  - 
%0 Journal Article
%A M. L. Egorov
%A V. A. Zalgaller
%T Visibility curves for ovals
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 13-35
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a1/
%G ru
%F ZNSL_1997_246_a1
M. L. Egorov; V. A. Zalgaller. Visibility curves for ovals. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 2, Tome 246 (1997), pp. 13-35. http://geodesic.mathdoc.fr/item/ZNSL_1997_246_a1/