Binary problems. A spectral approach
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 130-148

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the first part of the work on the Goldbach binary problem. Here an arithmetic analog of the Heisenberg noncommutativity for the Möbius function is introduced. With the help of this analog the binary problem is translated into the language of the mean for Klosterman sums. In the second part this mean will be translated into the language of spectral estimates that yield a solution of the binary problem.
@article{ZNSL_1997_245_a6,
     author = {A. I. Vinogradov},
     title = {Binary problems. {A} spectral approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--148},
     publisher = {mathdoc},
     volume = {245},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a6/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - Binary problems. A spectral approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 130
EP  - 148
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a6/
LA  - ru
ID  - ZNSL_1997_245_a6
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T Binary problems. A spectral approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 130-148
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a6/
%G ru
%F ZNSL_1997_245_a6
A. I. Vinogradov. Binary problems. A spectral approach. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 14, Tome 245 (1997), pp. 130-148. http://geodesic.mathdoc.fr/item/ZNSL_1997_245_a6/